Interval numbers of powers of block graphs
نویسندگان
چکیده
منابع مشابه
Powers of Hamiltonian paths in interval graphs
We give a simple proof that the obvious necessary conditions for a graph to contain the kth power of a Hamiltonian path are sufficient for the class of interval graphs. The proof is based on showing that a greedy algorithm tests for the existence of Hamiltonian path powers in interval graphs. We will also discuss covers by powers of paths and analogues of the Hamiltonian completion number. c © ...
متن کاملIncidence dominating numbers of graphs
In this paper, the concept of incidence domination number of graphs is introduced and the incidence dominating set and the incidence domination number of some particular graphs such as paths, cycles, wheels, complete graphs and stars are studied.
متن کاملIsometric-path numbers of block graphs
An isometric path between two vertices in a graph G is a shortest path joining them. The isometric-path number of G, denoted by ip(G), is the minimum number of isometric paths required to cover all vertices of G. In this paper, we determine exact values of isometric-path numbers of block graphs. We also give a linear-time algorithm for finding the corresponding paths.
متن کاملThe upper domatic number of powers of graphs
Let $A$ and $B$ be two disjoint subsets of the vertex set $V$ of a graph $G$. The set $A$ is said to dominate $B$, denoted by $A rightarrow B$, if for every vertex $u in B$ there exists a vertex $v in A$ such that $uv in E(G)$. For any graph $G$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_p}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i rightarrow V_j$ or $V_j rightarrow...
متن کاملEnergy of Graphs, Matroids and Fibonacci Numbers
The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2004
ISSN: 0012-365X
DOI: 10.1016/s0012-365x(03)00098-0